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Abstract—The Erlang loss model is one of the fundamental distribution function, density and moments of the blocking
tools in queueing theory with many applications to communica- time. In addition, we compute the moment generating functio
tions networks. For example, in a simple cellular voice network, (mgf) of the blocking time and the probabilities of zero

the Erlang-B blocking formula is the traditional approach to . .
model the proportion of time cellular base-stations are fully blocking and complete blocking for the hour. A sketch prof o

loaded in the busy hour. Such steady state results do not provide the distribution function appeared previously in Tunrfeliet.
information on such important questions as: how likely is it al. [12]. In this paper, we extend this work and give a congplet
that the blocking time in the busy hour exceeds some threshold. derivation of the distribution function and a numericaltgtse
Hence we look in detail at the blocking time in the busy hour, 5h5r6ach to computation as well as the completely new msult
or any finite period. We derive the exact distribution function . - .

and density as well as the moments and moment generating on blocking p_robabllltles, moments, the density ar_ld th_e.m_gf
function of the blocking time, denoted X. In addition we derive 1he method is based on an example of the uniformization

the probabilities of zero blocking, P(X = 0), and complete technique given in Ross [13, p.174].
blocking, P(X = 1 hour), in the busy hour.

II. BLOCKING TIME DISTRIBUTION FUNCTION

I. INTRODUCTION . . . .
Consider the ELM with)M channels, Poisson call arrivals

_ The ELM is a basic model in queueing theory [1] anfiaie \) and exponential call times (ratd. The model assumes
is of fundamental importance in the analysis of blocking i jnfinite population of potential callers and blocked salte
telephone traffic [2]. The ELM and the associated blockings; | et x(7) be the continuous time Markov chain given by
probability (Erlang-B) are discussed in virtually all texti,o umber of channels in use at timeor + € [0,4]. Also,
on networks and in the past, Erlang-B formulae have beggfine Si(t) to be the total busy time (time in stafef) in

widely used in dimensioning networks, such as cellular e/oi%,t], given the initial stateX (0) = . The unconditional busy
networks. Even with the advent of multi-media networks arﬁime is denoteds(t) with the distribution function

mixtures of data and voice, such results remain useful guide

and are widely used due to their simplicity in both industry F(x)=P(S(t) <z)

[3] and in research [4]. Erlang-B results are still finding M

applications today [5] and the ELM remains the basis of many - Z P(Si(t) < z)P(X(0) = 4). (1)
traffic models [6]. The ELM is also commonly used as a basis i—0

for extension to more complex situations. For example, imuItW . . o S

. : : . : e require an expression for the distribution function iy (1
dimensional queues built on the ELM which handle different O

) . bove. If we assume the system is in steady state -at0,

traffic types have been applied to cellular OFDMA [7] an en the initial state probability is given by the Erlang-B o
cognitive radio scenarios [8]. Although the ELM is a gener ! incated Poisson forFr)nuIa YS9 y 9
gueueing model with many applications, for ease of expmsiti
we discuss the ELM in the concrete context of a cellular radio . M ‘
network. Hence, the channels available at the base station a’(X(0) = i) = Q¢(/\/u)/ > qi(\p), i=0,1,...,M,
the servers and the cellular calls are the customers. J=0

. N L 2)
The dominant use of the ELM in virtually all applications i " . ( :
is the simple closed form blocking probability, the Erlangwhiregil_(t)‘)f)l‘ e_Xpt(f)‘)/L“ tThTw key tokcomputmg tf}e s
B result, that stems from the ELM. However, such steadyo ability in (1) is to use a technique known as uniformiza-

state results do not give information on how likely it is tot on [13, p.174] which makes all states have the same rate of

observe long periods of blocking. Hence, our aim is a coreple ansition by introducing intra-state transitions. Thection

characterization of the blocking time, X, in a fixed interval‘rjlp_lrf::eS th_:cs m_ethgdology to_ the EL'IVI' | val he old
assuming the ELM holds. Such results are not available,' ' Uniformize€d process is comp etely equivalent to the o

although other transient analyses of the ELM have appear%rbe but has different transition probabilities [13, p.173]
[1], [2], [9]-[11]. Hence, we derive exact expressions foe t {
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new process leaves any state. For a birth and death procéssan example, consider the first equation in (9). Starting in
like the ELM, these terms are well known [13, p.175,176], statei, the process can only move to stajes- ¢ — 1, j =i
or j =i+ 1. Hence, there are 3 possible transitions from

v; = Atip 1=0,1,....M~1 (4) to j with probability p;;. Conditional on the actual transition
M =M, made, from statg there must still bé: visits to the busy state
v=A+ (M — 1), assuming\ > y, (5) inthe reduced number of—1 remaining transitions. This has

) ) probability ¢(k, j,n — 1) and the first equation in (9) follows
Piiv1t = A (A+ip) =1=pii—1, =12, M~1, from this first step analysis.

Po1 =DPm,m—1 = L. Hence, the distribution of the busy time is given exactly by
(6) equations (1)-(10) and is summarised below:

Using the uniformized process, we can compute the firstP(S(t) < z) =

probability in (1) by conditioning onN(¢), the number of M oo n+1

transitions in[0, /] made by the new process, and noting that {Z Gi(M\ 1) Y an(vt) Y alk,i,n)P(Xa (k) < I)}
N(t) is a Poisson process with rate[13, p.175]. Hence, =0 n=0 k=0

I M -1
P(Si(t) <x) =Y P(Si(t) < z|N(t) = n)gn(vt). X [Z%(A/u)] : (11)
j=0

n=0

Now, definingZ(t) to be the total number of visits to the busyThe structure of (11) is simple for numerically stable summa
state in[0,¢] and X,,(k) to be the total time spent in the busytion since all terms are probabilities and hence, the suiomat

state duringk visits out ofn transitions we have is over positive bounded terms. The only complexity in (11)
. is the computation of the(k,i,n) terms. However, the 3-D
P(Si(t) < z) = an(vt) @) array, q(k,i,n), can be efficiently computed using a layered
0 approach afforded by the recursion relationships in (9 Th
n+1 lower boundary in thek,i,n space is specified by (10).

X Z P(Z(t) = k|X(0) =i, N(t) = n)P(X,(k) <z). Startingwithn = 0, the array can be constructed by populating
k=0 eachk,: plane (limited byt < n + 1 andi < M) using
From [13, p.178], the last probability in (7) is the binomia®)- Each step in (9) simply involves a summation of 2 or 3
tail probability neighboring elements, weighted by the transition prokiésl
in (3). After ak, ¢ plane is complete, the recursion proceeds
3 () (g)l (1- g)"*ﬂ k <n,z <t Upwards along the axis and anothek, i plane is populated.

P(X,(k) < z) =

0, =n+1lz<t IIl. PROBABILITIES, DENSITY AND MOMENTS

1, x=1. The distribution is of mixed type with a continuous density

(8) over(0,t) and non-zero probabilities at zero ahdgiven by
The conditional probability forZ(¢) in (7) is harder and M1

closed form expressions seem infeasible for anything other o . = .
than the smallest cases/ = 2 or 3 say. Hence, we use a P(S() =0) = ; q‘()‘/mnz_%q"(vt)q(o’l’n)
first step analysis [14, p.84] to create a recursion. Degotin M_ 1
q(k,i,n) = P(Z(t) = k|X(0) =i, N(t) = n) for compact- ) 12
ness this gives, fok = 0,1,...,n+1, andn =0,1,... 8 j:Oq]( /- (12)
i+1
q(k,z,n)z Z pzjq(kajvn_1)7 Z:177M_1 M
j=1—1 —N
’ P(S() = 1) = {au\/we ™™} [ 3" ;M) (13)
§=0

1
Q(k7 Oa n) = sz;gq(k7]7n - 1)>
7=0

and

Equation (12) follows from (11) withe = 0. Since no time

M is spent in the busy state, the initial state cannotMpeand
gk, M,n) = > pigalk—1,j,n—1), so the initial summation in (12) is from 0 t&/ — 1 rather
J=M—1 than from 0 toM. Also, there cannot be any visits to state

(9) M so that onlyq(0,4,n) is relevant. Finally, given that there
which can be used as a recursion to the boundary values are no busy state visits?(X,, < 0) = 1 and (12) is seen

— . - as a special case of (11). Obtaining (13) is easier as the
q(0,,0) =1, i=0,1,....M -1
7 ’ U ’ system must start in the busy state which occurs with proba-
q(0,M,n) =0, n=01,..., bility qM()\/u)/ZﬁO qj(\/p). After this, no departures are
g(n+1,M,n) = (pyn)", n=0.1,..., allowed for a period of time. Since the probability of an
gn+1,i,n) =0, n=0,1,..., i=0,1,....,M—1 individual departure exceeding tinteis e #* the probability

(16) that no calls leave before timeis e=*#* and (13) follows.



Note that the only term in (11) involving is P(X,, (k) <

suffices to computey’(x) and fot z"g'
whereg(z) = (%) (1— )"
nx

o= () ) ()
/Ot 2"g (x) do = {

we can express the continuous part of the density as

- |

(z) dx respectively,
~'. Using the results

b

—rt"B(r+i,n—i+1) i<n
nt”
n+r

1=n,

M 00 n

S a0 S au(vt) S alk,i,n)

(V&0 ()6
(14)

for 0 < = < t. The moments are given by

{qu A ) an (vt) Z (k,i,n)

Z( > —rt"B(r+j,n—j+1)+nt"/(n+71)

M -1
x [quwm +HP(S(t) = 1), (15)
j=0
The mgf of S(¢) can also be derived from
MS’(t) (w) =F [ewS(t)} (16)

_ /Ot F(x)e da+ P (S(t) = 0) + ¢“*P (S(t) = 1)

The probabilities |n (16) are given by (12) and (13). Defining

Giule) = (5) (15"
(16) can be written as

Zqz A1) nf;)qn (vt) kzn:_oq k,i,n)
x Zk (%) (3) tnte) [;qu/u)]

)= [ Gt

(j — %), the integral in

where

e dz.

integrals in [15, p.364]. This approach gives the result

Hence, when computing the density and moments it

0 j=n=0
nt(—wt) "y (n, —wt) j=n>0
—nte (wt)_”v(n,wt) j=0,n>0
Hjp(w) = < ;
Js ( ) t Z (n—i—l)(il)rx
{J )=y (r + j, —wt)
—n(— wt) (r+3+Dy(r + j+1,—wt)} otherwise
where~(-,-) is the lower incomplete gamma function.

Hence, we have a complete characterisation of the busy time
in [0, ¢] via the distribution function (11), discrete probabilitie
(12-13), density (14), moments (15) and the mgf (16).

IV. SIMULATION RESULTS

We present Matlab simulation results in order to validate
the analytical expressions derived in Sections Il and |lbnité
Carlo simulations were used to evaluate the empirical tiark
time CDF and mean blocking time. The system was modelled
using the standard exponential inter-arrival times anadepe
times for the ELM. This created a single realisation of the
ELM for one finite time period, which was replicated)*
times to provide simulation results. These were compardd wi
the theoretical results in (11) and (15), respectively.

Fig. 1 shows the CDF of the blocking time for the scenarios:
M=3, =15 up=03andM =3, A =5, u = 1. While
these parameter choices are somewhat unrealistic, they are
chosen to demonstrate the agreement of the analyticaltsesul
for both the continuous part of the CDF and the zero and full
blocking endpoint probabilities given by (12) and (13). We
note good agreement between simulations and analysis.

—_— simula‘tion
| o theory
o theory endpoints
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Fig. 1.

The effect of the number of channels on the blocking time
CDF is shown in Fig. 2, which shows results for an arrival
rate of A\ = 150 and a call service rate gi = 10. Noting
the logarithmic scale on the abscissa, we observe a rapid
reduction in the blocking probability CDF with increasifg.

For example, a system with/ = 25 and M = 20 channels
results in a five-fold increase in the 90th percentile fr2¥h

The terms,H; ,,(w), are straightforward to compute by exto 10% blocking. The analytical results obtained via (11) are
panding the binomial term irG;,(«) and using standard in close agreement with the simulations.
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Fig. 2.  Blocking time CDFs for varying numbers of channels= 1, Fig. 4. Mean blocking time versud/ (¢t = 1, u = 25).
X = 150, u = 10).

_ period, [0, t], assuming the ELM holds. Exact expressions are
Fig. 3 shows the complementary CDF (CCDF) of thgjven for the distribution function, density, moments angfm
blocking time for varying service rateg, with A = 150 and of the blocking time. The probabilities of zero and complete
M = 10. We use a log-scale to highlight the upper tail of thg|ocking are also given. To the best of the authors’ knowbedg
blocking time distribution. Fop, = 25, the Erlang-B blocking hjs is the first time such expressions have been derived: Sim
probability is 4% so the traditional approach to quantifyingyation results showing close agreement with the theaktic

the systemu = 25, A = 150, M =10 is via this steady state results were presented for a range of system parameters.
blocking probability of4%. For this system there is 8%

chance that more tha&% of the busy hour is blocked and
that there is 8% chance that more that0% of the hour is
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