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Abstract—The Erlang loss model is one of the fundamental
tools in queueing theory with many applications to communica-
tions networks. For example, in a simple cellular voice network,
the Erlang-B blocking formula is the traditional approach to
model the proportion of time cellular base-stations are fully
loaded in the busy hour. Such steady state results do not provide
information on such important questions as: how likely is it
that the blocking time in the busy hour exceeds some threshold.
Hence we look in detail at the blocking time in the busy hour,
or any finite period. We derive the exact distribution function
and density as well as the moments and moment generating
function of the blocking time, denoted X. In addition we derive
the probabilities of zero blocking, P (X = 0), and complete
blocking, P (X = 1 hour), in the busy hour.

I. I NTRODUCTION

The ELM is a basic model in queueing theory [1] and
is of fundamental importance in the analysis of blocking in
telephone traffic [2]. The ELM and the associated blocking
probability (Erlang-B) are discussed in virtually all texts
on networks and in the past, Erlang-B formulae have been
widely used in dimensioning networks, such as cellular voice
networks. Even with the advent of multi-media networks and
mixtures of data and voice, such results remain useful guides
and are widely used due to their simplicity in both industry
[3] and in research [4]. Erlang-B results are still finding
applications today [5] and the ELM remains the basis of many
traffic models [6]. The ELM is also commonly used as a basis
for extension to more complex situations. For example, multi-
dimensional queues built on the ELM which handle different
traffic types have been applied to cellular OFDMA [7] and
cognitive radio scenarios [8]. Although the ELM is a general
queueing model with many applications, for ease of exposition
we discuss the ELM in the concrete context of a cellular radio
network. Hence, the channels available at the base station are
the servers and the cellular calls are the customers.

The dominant use of the ELM in virtually all applications
is the simple closed form blocking probability, the Erlang-
B result, that stems from the ELM. However, such steady
state results do not give information on how likely it is to
observe long periods of blocking. Hence, our aim is a complete
characterization of the blocking time, X, in a fixed interval,
assuming the ELM holds. Such results are not available,
although other transient analyses of the ELM have appeared
[1], [2], [9]–[11]. Hence, we derive exact expressions for the
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distribution function, density and moments of the blocking
time. In addition, we compute the moment generating function
(mgf) of the blocking time and the probabilities of zero
blocking and complete blocking for the hour. A sketch proof of
the distribution function appeared previously in Tunnicliffe et.
al. [12]. In this paper, we extend this work and give a complete
derivation of the distribution function and a numerically stable
approach to computation as well as the completely new results
on blocking probabilities, moments, the density and the mgf.
The method is based on an example of the uniformization
technique given in Ross [13, p.174].

II. B LOCKING TIME DISTRIBUTION FUNCTION

Consider the ELM withM channels, Poisson call arrivals
(rateλ) and exponential call times (rateµ). The model assumes
an infinite population of potential callers and blocked calls are
lost. LetX(τ) be the continuous time Markov chain given by
the number of channels in use at timeτ for τ ∈ [0, t]. Also,
defineSi(t) to be the total busy time (time in stateM ) in
[0, t], given the initial stateX(0) = i. The unconditional busy
time is denotedS(t) with the distribution function

F (x) = P (S(t) ≤ x)

=

M
∑

i=0

P (Si(t) ≤ x)P (X(0) = i). (1)

We require an expression for the distribution function in (1)
above. If we assume the system is in steady state atτ = 0,
then the initial state probability is given by the Erlang-B or
truncated Poisson formula

P (X(0) = i) = qi(λ/µ)
/

M
∑

j=0

qj(λ/µ), i = 0, 1, . . . ,M,

(2)
whereqi(λ) = λi exp(−λ)/i!. The key to computing the first
probability in (1) is to use a technique known as uniformiza-
tion [13, p.174] which makes all states have the same rate of
transition by introducing intra-state transitions. This section
applies this methodology to the ELM.

The uniformized process is completely equivalent to the old
one but has different transition probabilities [13, p.175],

p∗ij =

{

1− vi/v j = i

(vi/v)pij j 6= i,
(3)

wherepij are the transition probabilities of the original pro-
cess,vi is the rate the original process leaves statei and
v = max(v0, v1, . . . , vM ) is the common rate at which the
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new process leaves any state. For a birth and death process,
like the ELM, these terms are well known [13, p.175,176],

vi =

{

λ+ iµ i = 0, 1, . . . ,M − 1

Mµ i = M,
(4)

v = λ+ (M − 1)µ, assumingλ > µ, (5)

pi,i+1 = λ/(λ+ iµ) = 1− pi,i−1, i = 1, 2, . . . ,M − 1,

p0,1 = pM,M−1 = 1.

}

(6)

Using the uniformized process, we can compute the first
probability in (1) by conditioning onN(t), the number of
transitions in[0, t] made by the new process, and noting that
N(t) is a Poisson process with ratev [13, p.175]. Hence,

P (Si(t) ≤ x) =

∞
∑

n=0

P (Si(t) ≤ x|N(t) = n)qn(vt).

Now, definingZ(t) to be the total number of visits to the busy
state in[0, t] andXn(k) to be the total time spent in the busy
state duringk visits out ofn transitions we have

P (Si(t) ≤ x) =
∞
∑

n=0

qn(vt) (7)

×

n+1
∑

k=0

P (Z(t) = k|X(0) = i,N(t) = n)P (Xn(k) ≤ x).

From [13, p.178], the last probability in (7) is the binomial
tail probability

P (Xn(k) ≤ x) =















n
∑

i=k

(

n
i

) (

x
t

)i (

1− x
t

)n−i
, k ≤ n, x < t

0, k = n+ 1, x < t

1, x = t.
(8)

The conditional probability forZ(t) in (7) is harder and
closed form expressions seem infeasible for anything other
than the smallest cases,M = 2 or 3 say. Hence, we use a
first step analysis [14, p.84] to create a recursion. Denoting
q(k, i, n) = P (Z(t) = k|X(0) = i,N(t) = n) for compact-
ness this gives, fork = 0, 1, . . . , n+ 1, andn = 0, 1, . . .

q(k, i, n) =

i+1
∑

j=i−1

p∗ijq(k, j, n− 1), i = 1, . . . ,M − 1

q(k, 0, n) =
1

∑

j=0

p∗0jq(k, j, n− 1),

q(k,M, n) =

M
∑

j=M−1

p∗Mjq(k − 1, j, n− 1),



















































(9)
which can be used as a recursion to the boundary values

q(0, i, 0) = 1, i = 0, 1, . . . ,M − 1,

q(0,M, n) = 0, n = 0, 1, . . . ,

q(n+ 1,M, n) = (p∗MM )n, n = 0, 1, . . . ,

q(n+ 1, i, n) = 0, n = 0, 1, . . . , i = 0, 1, . . . ,M − 1.



















(10)

As an example, consider the first equation in (9). Starting in
statei, the process can only move to statesj = i − 1, j = i
or j = i + 1. Hence, there are 3 possible transitions fromi
to j with probability p∗ij . Conditional on the actual transition
made, from statej there must still bek visits to the busy state
in the reduced number ofn−1 remaining transitions. This has
probability q(k, j, n− 1) and the first equation in (9) follows
from this first step analysis.

Hence, the distribution of the busy time is given exactly by
equations (1)–(10) and is summarised below:

P (S(t) ≤ x) =
{

M
∑

i=0

qi(λ/µ)

∞
∑

n=0

qn(vt)

n+1
∑

k=0

q(k, i, n)P (Xn(k) ≤ x)

}

×

[

M
∑

j=0

qj(λ/µ)

]

−1

. (11)

The structure of (11) is simple for numerically stable summa-
tion since all terms are probabilities and hence, the summation
is over positive bounded terms. The only complexity in (11)
is the computation of theq(k, i, n) terms. However, the 3-D
array, q(k, i, n), can be efficiently computed using a layered
approach afforded by the recursion relationships in (9). The
lower boundary in thek, i, n space is specified by (10).
Starting withn = 0, the array can be constructed by populating
eachk, i plane (limited byk ≤ n + 1 and i ≤ M ) using
(9). Each step in (9) simply involves a summation of 2 or 3
neighboring elements, weighted by the transition probabilities
in (3). After a k, i plane is complete, the recursion proceeds
upwards along then axis and anotherk, i plane is populated.

III. PROBABILITIES, DENSITY AND MOMENTS

The distribution is of mixed type with a continuous density
over (0, t) and non-zero probabilities at zero andt, given by

P (S(t) = 0) =

{

M−1
∑

i=0

qi(λ/µ)

∞
∑

n=0

qn(vt)q(0, i, n)

}

×

[

M
∑

j=0

qj(λ/µ)

]

−1

, (12)

and

P (S(t) = t) =
{

qM (λ/µ)e−Mµt
}

/

M
∑

j=0

qj(λ/µ) (13)

Equation (12) follows from (11) withx = 0. Since no time
is spent in the busy state, the initial state cannot beM and
so the initial summation in (12) is from 0 toM − 1 rather
than from 0 toM . Also, there cannot be any visits to state
M so that onlyq(0, i, n) is relevant. Finally, given that there
are no busy state visits,P (Xn ≤ 0) = 1 and (12) is seen
as a special case of (11). Obtaining (13) is easier as the
system must start in the busy state which occurs with proba-
bility qM (λ/µ)/

∑M

j=0 qj(λ/µ). After this, no departures are
allowed for a period of timet. Since the probability of an
individual departure exceeding timet is e−µt the probability
that no calls leave before timet is e−Mµt and (13) follows.
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Note that the only term in (11) involvingx is P (Xn(k) ≤
x). Hence, when computing the density and moments it
suffices to computeg′(x) and

∫ t

0
xrg′(x) dx respectively,

whereg(x) =
(

x
t

)i (

1− x
t

)n−i
. Using the results

g′(x) =
(x

t

)i−1 (

1−
x

t

)n−i−1
(

1

t

)

{

i−
nx

t

}

,

∫ t

0

xrg′(x) dx =

{

−rtrB(r + i, n− i+ 1) i < n
ntr

n+r
i = n,

we can express the continuous part of the density as

f(x) =

{

M
∑

i=0

qi(λ/µ)

∞
∑

n=0

qn(vt)

n
∑

k=0

q(k, i, n)

×

n
∑

j=k

(

n

j

)

(x

t

)j−1 (

1−
x

t

)n−j−1
(

1

t

)

(

j −
nx

t

)







×

[

M
∑

j=0

qj(λ/µ)

]

−1

(14)

for 0 < x < t. The moments are given by

E[Sr(t)] =

{

M
∑

i=0

qi(λ/µ)

∞
∑

n=0

qn(vt)

n
∑

k=0

q(k, i, n)

×





n−1
∑

j=k

(

n

j

)

(−rtrB(r + j, n− j + 1)) + ntr/(n+ r)











×

[

M
∑

j=0

qj(λ/µ)

]

−1

+ trP (S(t) = t). (15)

The mgf ofS(t) can also be derived from

MS(t)(ω) = E
[

eωS(t)
]

(16)

=

∫ t

0

f(x)eωx dx+ P (S(t) = 0) + eωtP (S(t) = t) .

The probabilities in (16) are given by (12) and (13). Defining
Gj,n(x) =

(

x
t

)j−1 (
1− x

t

)n−j−1 (
j − nx

t

)

, the integral in
(16) can be written as

M
∑

i=0

qi(λ/µ)

∞
∑

n=0

qn(vt)

n
∑

k=0

q(k, i, n)

×

n
∑

j=k

(

n

j

)(

1

t

)

Hj,n(ω)

[

n
∑

j=0

qj(λ/µ)

]

−1

,

where

Hj,n(ω) =

∫ t

0

Gj,n(x)e
ωx dx.

The terms,Hj,n(ω), are straightforward to compute by ex-
panding the binomial term inGj,n(x) and using standard

integrals in [15, p.364]. This approach gives the result

Hj,n(ω) =















































0 j = n = 0

nt(−ωt)−nγ(n,−ωt) j = n > 0

−nteωt(ωt)−nγ(n, ωt) j = 0, n > 0

t
n−j−1
∑

r=0

(

n−j−1
r

)

(−1)r×
{

j(−ωt)−(r+j)γ(r + j,−ωt)

−n(−ωt)−(r+j+1)γ(r + j + 1,−ωt)
}

otherwise

whereγ(·, ·) is the lower incomplete gamma function.
Hence, we have a complete characterisation of the busy time

in [0, t] via the distribution function (11), discrete probabilities
(12–13), density (14), moments (15) and the mgf (16).

IV. SIMULATION RESULTS

We present Matlab simulation results in order to validate
the analytical expressions derived in Sections II and III. Monte
Carlo simulations were used to evaluate the empirical blocking
time CDF and mean blocking time. The system was modelled
using the standard exponential inter-arrival times and departure
times for the ELM. This created a single realisation of the
ELM for one finite time period, which was replicated104

times to provide simulation results. These were compared with
the theoretical results in (11) and (15), respectively.

Fig. 1 shows the CDF of the blocking time for the scenarios:
M = 3, λ = 1.5, µ = 0.3 andM = 3, λ = 5, µ = 1. While
these parameter choices are somewhat unrealistic, they are
chosen to demonstrate the agreement of the analytical results
for both the continuous part of the CDF and the zero and full
blocking endpoint probabilities given by (12) and (13). We
note good agreement between simulations and analysis.
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Fig. 1. Blocking time CDFs fort = 1.

The effect of the number of channels on the blocking time
CDF is shown in Fig. 2, which shows results for an arrival
rate of λ = 150 and a call service rate ofµ = 10. Noting
the logarithmic scale on the abscissa, we observe a rapid
reduction in the blocking probability CDF with increasingM .
For example, a system withM = 25 andM = 20 channels
results in a five-fold increase in the 90th percentile from2%
to 10% blocking. The analytical results obtained via (11) are
in close agreement with the simulations.
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Fig. 2. Blocking time CDFs for varying numbers of channels (t = 1,
λ = 150, µ = 10).

Fig. 3 shows the complementary CDF (CCDF) of the
blocking time for varying service rates,µ, with λ = 150 and
M = 10. We use a log-scale to highlight the upper tail of the
blocking time distribution. Forµ = 25, the Erlang-B blocking
probability is 4% so the traditional approach to quantifying
the systemµ = 25, λ = 150, M = 10 is via this steady state
blocking probability of4%. For this system there is a10%
chance that more than8% of the busy hour is blocked and
that there is a3% chance that more than10% of the hour is
blocked. Hence, it is not unusual for periods of blocking to
occur which are 2-3 times greater than the mean. The CCDF
results allow us to quantify this information in a precise way.

Finally, Fig. 4 shows the mean blocking time forµ = 25,
where the theoretical values obtained using (15) are verified
via simulation. Note that, as expected, the mean blocking
times from (15) also agree exactly with the Erlang-B results.
However, (15) is more general and also provides the higher
order moments and the variance in particular.
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V. CONCLUSIONS

We have provided a complete study of the finite time
blocking characteristics of the ELM. In particular, we have
investigated the distribution of the blocking time in a fixed
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Fig. 4. Mean blocking time versusM (t = 1, µ = 25).

period,[0, t], assuming the ELM holds. Exact expressions are
given for the distribution function, density, moments and mgf
of the blocking time. The probabilities of zero and complete
blocking are also given. To the best of the authors’ knowledge
this is the first time such expressions have been derived. Sim-
ulation results showing close agreement with the theoretical
results were presented for a range of system parameters.

REFERENCES
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